Validation of a French version of the NADL-F: measuring impact in everyday financial use in adults with mathematical difficulties.
DOI:
https://doi.org/10.61989/6byw4k71Keywords:
mathematical cognition, developmental dyscalculia, adult, NADL-F, assessment, financial impactAbstract
Context: Mathematical skills are essential, since mathematics is ubiquitous in industrialized countries. Mathematical difficulties persist into adulthood in people with Mathematical Learning Disabilities, formerly known as dyscalculia. Yet few studies have focused on this population, and none have measured the impact of such disorders on everyday financial skills.
Aim: The aim was to investigate whether adults with mathematical difficulties have more difficulty than adults without mathematical difficulties in manipulating financial concepts and understanding purchasing situations.
Method: The present study included 171 volunteers with no acquired neurological disorder. Thus, 63 adults with mathematical difficulties and 108 control participants were compared on financial tasks derived from the Italian NADL-F test (Arcara, 2017) translated and adapted into French (NADL-F-fr) for the present study: counting change, reading numbers on financial supports, paying or giving change in purchase situations, calculating percentages, defining financial terms, spotting scams. Participants also gave feedback on their skills in these areas.
Results: The performance of adults with mathematical difficulties is consistent with their perception of their difficulties. They perform significantly less well at counting change, reading numbers on financial or commercial documents, estimating the amount of their shopping, calculating percentages and defining financial concepts.
Conclusion: Adults with mathematical difficulties also have particular difficulty manipulating mathematics concepts related to finance. The NADL-F-fr will be a useful tool in assessing and diagnosing Mathematical Learning Disabilities for adults who couldn’t be diagnosed during childhood. In addition, these results show the importance of working with ecological financial situations in rehabilitation.
References
American Psychiatric Association. (2015). DSM-5 : Manuel diagnostique et statistique des troubles mentaux. (M.-A. Crocq & J.-D. Guelfi, Éd., P. Boyer, C.-B. Pull, & M.-C. Pull-Erpelding, Trad.). Elsevier Masson.
Arcara, G. (2017). Numerical Activities of Daily Living – Financial (NADL-F) – Test Materials. https://doi.org/10.17605/OSF.IO/D9JNG
Arcara, G., Burgio, F., Benavides-Varela, S., Toffano, R., Gindri, P., Tonini, E., Meneghello, F., & Semenza, C. (2019). Numerical Activities of Daily Living – Financial (NADL-F): A tool for the assessment of financial capacities. Neuropsychological Rehabilitation, 29(7), 1062-1084. https://doi.org/10.1080/09602011.2017.1359188
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224-237. https://doi.org/10.1037/0096-3445.130.2.224
Ashkenazi, S., Rubinsten, O., & Henik, A. (2009). Attention, automaticity, and developmental dyscalculia. Neuropsychology, 23(4), 535-540. https://doi.org/10.1037/a0015347
Bieg, M., Goetz, T., Wolter, I., & Hall, N. C. (2015). Gender stereotype endorsement differentially predicts girls’ and boys’ trait-state discrepancy in math anxiety. Frontiers in Psychology, 6, 1404. https://doi.org/10.3389/fpsyg.2015.01404
Bulthé, J., Prinsen, J., Vanderauwera, J., Duyck, S., Daniels, N., Gillebert, C. R., Mantini, D., Op de Beeck, H. P., & De Smedt, B. (2019). Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. NeuroImage, 190, 289-302. https://doi.org/10.1016/j.neuroimage.2018.06.012
Butterworth, B. (2005). Developmental dyscalculia. Dans J. I. D. Campbell (dir.), The Handbook of Mathematical Cognition (p. 455-467). Psychology Press. https://doi.org/10.4324/9780203998045
Castaldi, E., Mirassou, A., Dehaene, S., Piazza, M., & Eger, E. (2018). Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia. PLoS ONE, 13(12), e0209256. https://doi.org/10.1371/journal.pone.0209256
Chipman, S. F., Krantz, D. H., & Silver, R. (1992). Mathematics anxiety and science careers among able college women. Psychological Science, 3(5), 292–295. https://doi.org/10.1111/j.1467-9280.1992.tb00675.x
De Visscher, A., & Noël, M.-P. (2013). A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50-70. https://doi.org/10.1016/j.cortex.2012.01.003
De Visscher, A., Noël, M.-P., Pesenti, M., & Dormal, V. (2018). Developmental dyscalculia in adults: Beyond numerical magnitude impairment. Journal of Learning Disabilities, 51(6), 600-611. https://doi.org/10.1177/0022219417732338
Dirks, E., Spyer, G., van Lieshout, E. C. D. M., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41(5), 460-473. https://doi.org/10.1177/0022219408321128
Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508. https://doi.org/10.3389/fpsyg.2016.00508
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053
Furman, T., & Rubinsten, O. (2012). Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia. Behavioral and Brain Functions, 8, 55-69. https://doi.org/10.1186/1744-9081-8-55
Ganor-Stern, D. (2017). Can dyscalculics estimate the results of arithmetic problems? Journal of Learning Disabilities, 50(1), 23-33. https://doi.org/10.1177/0022219415587785
Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental & Behavioral Pediatrics, 32(3), 250-263. https://doi.org/10.1097/DBP.0b013e318209edef
Gerardi, K., Goette, L., & Meier, S. (2010). Financial literacy and subprime mortgage delinquency: Evidence from a survey matched to administrative data. Federal Reserve Bank of Atlanta, Working Paper Series, 2010-10. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1600905
Gerber, P. J. (2012). The impact of learning disabilities on adulthood: A review of the evidenced-based literature for research and practice in adult education. Journal of Learning Disabilities, 45(1), 31-46. https://doi.org/10.1177/0022219411426858
Haberstroh, S., & Schulte-Körne, G. (2019). The diagnosis and treatment of dyscalculia. Deutsches Ärzteblatt international, 116(7), 107-114. https://doi.org/10.3238/arztebl.2019.0107
Handel, M. J. (2016). What do people do at work? A profile of U.S. jobs from the survey of workplace Skills, Technology, and Management Practices (STAMP). Journal for Labour Market Research, 49(2), 177-197. https://doi.org/10.1007/s12651-016-0213-1
Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. https://doi.org/10.2307/749455
Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The Abbreviated Math Anxiety Scale (AMAS): Construction, validity, and reliability. Assessment, 10(2), 178-182. https://doi.org/10.1177/1073191103010002008
Jansen, B. R. J., Schmitz, E. A., & Van Der Maas, H. L. J. (2016). Affective and motivational factors mediate the relation between math skills and use of math in everyday life. Frontiers in Psychology, 7, 513. https://doi.org/10.3389/fpsyg.2016.00513
Kaufmann, L., & Von Aster, M. (2012). The diagnosis and management of dyscalculia. Deutsches Ärzteblatt international, 109(45), 767-778. https://doi.org/10.3238/arztebl.2012.0767
Kovas, Y., Haworth, C. M. A., Harlaar, N., Petrill, S. A., Dale, P. S., & Plomin, R. (2007). Overlap and specificity of genetic and environmental influences on mathematics and reading disability in 10-year-old twins. Journal of Child Psychology and Psychiatry, 48(9), 914-922. https://doi.org/10.1111/j.1469-7610.2007.01748..x
Kucian, K., & Von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174(1), 1-13. https://doi.org/10.1007/s00431-014-2455-7
Lewis, C., Hitch, G. J., & Walker, P. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, 35(2), 283-292. https://doi.org/10.1111/j.1469-7610.1994.tb01162.x
Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities, 28(2), 96-106. https://doi.org/10.1177/002221949502800204
Limesurvey GmbH (s.d.). LimeSurvey: An open-source survey tool. http://www.limesurvey.org
Luoni, C., Scorza, M., Stefanelli, S., Fagiolini, B., & Termine, C. (2023). A neuropsychological profile of developmental dyscalculia: The role of comorbidity. Journal of Learning Disabilities, 56(4), 310-323. https://doi.org/10.1177/00222194221102925
Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 11, 311-322. https://doi.org/10.2147/PRBM.S141421
Marson, D. C., Sawrie, S. M., Snyder, S., McInturff, B., Stalvey, T., Boothe, A., Aldridge, T., Chatterjee, A., & Harrell, L. E. (2000). Assessing financial capacity in patients with Alzheimer disease: A conceptual model and prototype instrument. Archives of Neurology, 57(6), 877-884. https://doi.org/10.1001/archneur.57.6.877
Mc Kenna, J. S., & Nickols, S. Y. (1988). Planning for retirement security: What helps or hinders women in the middle years? Home Economics Research Journal, 17(2), 153-164. https://doi.org/10.1177/1077727X8801700204
Meiri, H., Sela, I., Nesher, P., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Breznitz, Z. (2012). Frontal lobe role in simple arithmetic calculations: An fNIR study. Neuroscience Letters, 510(1), 43-47. https://doi.org/10.1016/j.neulet.2011.12.066
Mejias, S., Grégoire, J., & Noël, M.-P. (2012). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164-170. https://doi.org/10.1016/j.lindif.2011.09.013
Ostad, S. A. (1998). Comorbidity between mathematics and spelling difficulties. Logopedics Phoniatrics Vocology, 23(4), 145-154. https://doi.org/10.1080/140154398434040
Paechter, M., Macher, D., Martskvishvili, K., Wimmer, S., & Papousek, I. (2017). Mathematics anxiety and statistics anxiety. Shared but also unshared components and antagonistic contributions to performance in statistics. Frontiers in Psychology, 8, 1196. https://doi.org/10.3389/fpsyg.2017.01196
Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., Torres, P., Suárez, R., & Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123-135. https://doi.org/10.1037/a0025356
Reyna, V. F., & Brainerd, C. J. (2007). The importance of mathematics in health and human judgment: Numeracy, risk communication, and medical decision making. Learning and Individual Differences, 17(2), 147-159. https://doi.org/10.1016/j.lindif.2007.03.010
Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19(5), 641-648. https://doi.org/10.1037/0894-4105.19.5.641
Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98(4), 854-867. https://doi.org/10.1037/0022-0663.98.4.854
Semenza, C., Meneghello, F., Arcara, G., Burgio, F., Gnoato, F., Facchini, S., Benavides-Varela, S., Clementi, M., & Butterworth, B. (2014). A new clinical tool for assessing numerical abilities in neurological diseases: Numerical activities of daily living. Frontiers in Aging Neuroscience, 6, 112. https://doi.org/10.3389/fnagi.2014.00112
Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. European Child & Adolescent Psychiatry, 9(S2), S58-S64. https://doi.org/10.1007/s007870070009
Vigna, G., Ghidoni, E., Burgio, F., Danesin, L., Angelini, D., Benavides-Varela, S., & Semenza, C. (2022). Dyscalculia in early adulthood: Implications for numerical activities of daily living. Brain Sciences, 12(3), 373. https://doi.org/10.3390/brainsci12030373
Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
Wechsler, D. (2008). Test de rendement individuel de Wechsler, 2e éd., version pour francophones. WIAT-II CDN-F. Harcourt Assessment.
Widera, E., Steenpass, V., Marson, D., Sudore, R. (2011). Finances in the older patient with cognitive impairment: “He didn’t want me to take over”. JAMA, 305(7), 698-706. https://doi.org/10.1001/jama.2011.164
Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118-132. https://doi.org/10.1016/j.lindif.2014.11.017
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Marion Lavest, Jessica Bourgin, Anne Lafay

This work is licensed under a Creative Commons Attribution 4.0 International License.

