Validation d'une version française du NADL-F : mesure de l'impact dans l’utilisation financière au quotidien chez des adultes avec des difficultés en mathématiques.
DOI :
https://doi.org/10.61989/6byw4k71Mots-clés :
cognition mathématique, dyscalculie développementale, adulte, NADL-F, test, impact financierRésumé
Contexte : Les compétences en mathématiques sont essentielles, celles-ci étant omniprésentes dans les pays industrialisés. Les difficultés en mathématiques perdurent à l’âge adulte chez les personnes présentant un trouble spécifique des apprentissages en mathématiques, anciennement appelé dyscalculie. Pourtant, peu d’études se sont intéressées à cette population et aucune n’a mesuré l’impact de tels troubles sur les capacités financières au quotidien.
Objectifs : L’objectif était de comparer les capacités de manipulation des concepts financiers et de compréhension des situations d’achats chez des individus avec et sans difficulté en mathématiques.
Méthode : La présente étude inclut 171 volontaires ne présentant pas de trouble neurologique acquis. Ainsi, 63 adultes avec des difficultés en mathématiques et 108 participants sans difficulté mathématique ont été confrontés à des tâches financières issues du test italien NADL-F (Arcara, 2017) traduit et adapté en français (NADL-F-fr) pour la présente étude : compter la monnaie, lire des nombres sur des supports financiers, payer ou rendre la monnaie dans des situations d’achat, calculer des pourcentages, définir des termes financiers, repérer des escroqueries. Les participants ont également donné leur ressenti sur leurs compétences dans ces différents domaines.
Résultats : Les performances des adultes avec des difficultés en mathématiques concordent avec leur perception de leurs difficultés. En effet, ils sont significativement moins performants que le groupe contrôle pour compter la monnaie, lire des nombres sur des documents financiers ou commerciaux, estimer le montant de leurs courses, calculer des pourcentages et définir des concepts financiers.
Conclusion : Les adultes présentant des difficultés mathématiques sont aussi particulièrement en difficulté pour manipuler des concepts mathématiques relatifs à la finance. Le NADL-F-fr sera un outil participant à l’évaluation et à la pose de diagnostic de trouble spécifique des apprentissages en mathématiques pour les adultes n’ayant pu être diagnostiqués pendant l’enfance. De plus, de tels résultats montrent l’importance de travailler, en rééducation, sur des situations financières écologiques.
Références
American Psychiatric Association. (2015). DSM-5 : Manuel diagnostique et statistique des troubles mentaux. (M.-A. Crocq & J.-D. Guelfi, Éd., P. Boyer, C.-B. Pull, & M.-C. Pull-Erpelding, Trad.). Elsevier Masson.
Arcara, G. (2017). Numerical Activities of Daily Living – Financial (NADL-F) – Test Materials. https://doi.org/10.17605/OSF.IO/D9JNG
Arcara, G., Burgio, F., Benavides-Varela, S., Toffano, R., Gindri, P., Tonini, E., Meneghello, F., & Semenza, C. (2019). Numerical Activities of Daily Living – Financial (NADL-F): A tool for the assessment of financial capacities. Neuropsychological Rehabilitation, 29(7), 1062-1084. https://doi.org/10.1080/09602011.2017.1359188
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224-237. https://doi.org/10.1037/0096-3445.130.2.224
Ashkenazi, S., Rubinsten, O., & Henik, A. (2009). Attention, automaticity, and developmental dyscalculia. Neuropsychology, 23(4), 535-540. https://doi.org/10.1037/a0015347
Bieg, M., Goetz, T., Wolter, I., & Hall, N. C. (2015). Gender stereotype endorsement differentially predicts girls’ and boys’ trait-state discrepancy in math anxiety. Frontiers in Psychology, 6, 1404. https://doi.org/10.3389/fpsyg.2015.01404
Bulthé, J., Prinsen, J., Vanderauwera, J., Duyck, S., Daniels, N., Gillebert, C. R., Mantini, D., Op de Beeck, H. P., & De Smedt, B. (2019). Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. NeuroImage, 190, 289-302. https://doi.org/10.1016/j.neuroimage.2018.06.012
Butterworth, B. (2005). Developmental dyscalculia. Dans J. I. D. Campbell (dir.), The Handbook of Mathematical Cognition (p. 455-467). Psychology Press. https://doi.org/10.4324/9780203998045
Castaldi, E., Mirassou, A., Dehaene, S., Piazza, M., & Eger, E. (2018). Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia. PLoS ONE, 13(12), e0209256. https://doi.org/10.1371/journal.pone.0209256
Chipman, S. F., Krantz, D. H., & Silver, R. (1992). Mathematics anxiety and science careers among able college women. Psychological Science, 3(5), 292–295. https://doi.org/10.1111/j.1467-9280.1992.tb00675.x
De Visscher, A., & Noël, M.-P. (2013). A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50-70. https://doi.org/10.1016/j.cortex.2012.01.003
De Visscher, A., Noël, M.-P., Pesenti, M., & Dormal, V. (2018). Developmental dyscalculia in adults: Beyond numerical magnitude impairment. Journal of Learning Disabilities, 51(6), 600-611. https://doi.org/10.1177/0022219417732338
Dirks, E., Spyer, G., van Lieshout, E. C. D. M., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41(5), 460-473. https://doi.org/10.1177/0022219408321128
Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508. https://doi.org/10.3389/fpsyg.2016.00508
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053
Furman, T., & Rubinsten, O. (2012). Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia. Behavioral and Brain Functions, 8, 55-69. https://doi.org/10.1186/1744-9081-8-55
Ganor-Stern, D. (2017). Can dyscalculics estimate the results of arithmetic problems? Journal of Learning Disabilities, 50(1), 23-33. https://doi.org/10.1177/0022219415587785
Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental & Behavioral Pediatrics, 32(3), 250-263. https://doi.org/10.1097/DBP.0b013e318209edef
Gerardi, K., Goette, L., & Meier, S. (2010). Financial literacy and subprime mortgage delinquency: Evidence from a survey matched to administrative data. Federal Reserve Bank of Atlanta, Working Paper Series, 2010-10. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1600905
Gerber, P. J. (2012). The impact of learning disabilities on adulthood: A review of the evidenced-based literature for research and practice in adult education. Journal of Learning Disabilities, 45(1), 31-46. https://doi.org/10.1177/0022219411426858
Haberstroh, S., & Schulte-Körne, G. (2019). The diagnosis and treatment of dyscalculia. Deutsches Ärzteblatt international, 116(7), 107-114. https://doi.org/10.3238/arztebl.2019.0107
Handel, M. J. (2016). What do people do at work? A profile of U.S. jobs from the survey of workplace Skills, Technology, and Management Practices (STAMP). Journal for Labour Market Research, 49(2), 177-197. https://doi.org/10.1007/s12651-016-0213-1
Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. https://doi.org/10.2307/749455
Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The Abbreviated Math Anxiety Scale (AMAS): Construction, validity, and reliability. Assessment, 10(2), 178-182. https://doi.org/10.1177/1073191103010002008
Jansen, B. R. J., Schmitz, E. A., & Van Der Maas, H. L. J. (2016). Affective and motivational factors mediate the relation between math skills and use of math in everyday life. Frontiers in Psychology, 7, 513. https://doi.org/10.3389/fpsyg.2016.00513
Kaufmann, L., & Von Aster, M. (2012). The diagnosis and management of dyscalculia. Deutsches Ärzteblatt international, 109(45), 767-778. https://doi.org/10.3238/arztebl.2012.0767
Kovas, Y., Haworth, C. M. A., Harlaar, N., Petrill, S. A., Dale, P. S., & Plomin, R. (2007). Overlap and specificity of genetic and environmental influences on mathematics and reading disability in 10-year-old twins. Journal of Child Psychology and Psychiatry, 48(9), 914-922. https://doi.org/10.1111/j.1469-7610.2007.01748..x
Kucian, K., & Von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174(1), 1-13. https://doi.org/10.1007/s00431-014-2455-7
Lewis, C., Hitch, G. J., & Walker, P. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, 35(2), 283-292. https://doi.org/10.1111/j.1469-7610.1994.tb01162.x
Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities, 28(2), 96-106. https://doi.org/10.1177/002221949502800204
Limesurvey GmbH (s.d.). LimeSurvey: An open-source survey tool. http://www.limesurvey.org
Luoni, C., Scorza, M., Stefanelli, S., Fagiolini, B., & Termine, C. (2023). A neuropsychological profile of developmental dyscalculia: The role of comorbidity. Journal of Learning Disabilities, 56(4), 310-323. https://doi.org/10.1177/00222194221102925
Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 11, 311-322. https://doi.org/10.2147/PRBM.S141421
Marson, D. C., Sawrie, S. M., Snyder, S., McInturff, B., Stalvey, T., Boothe, A., Aldridge, T., Chatterjee, A., & Harrell, L. E. (2000). Assessing financial capacity in patients with Alzheimer disease: A conceptual model and prototype instrument. Archives of Neurology, 57(6), 877-884. https://doi.org/10.1001/archneur.57.6.877
Mc Kenna, J. S., & Nickols, S. Y. (1988). Planning for retirement security: What helps or hinders women in the middle years? Home Economics Research Journal, 17(2), 153-164. https://doi.org/10.1177/1077727X8801700204
Meiri, H., Sela, I., Nesher, P., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Breznitz, Z. (2012). Frontal lobe role in simple arithmetic calculations: An fNIR study. Neuroscience Letters, 510(1), 43-47. https://doi.org/10.1016/j.neulet.2011.12.066
Mejias, S., Grégoire, J., & Noël, M.-P. (2012). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164-170. https://doi.org/10.1016/j.lindif.2011.09.013
Ostad, S. A. (1998). Comorbidity between mathematics and spelling difficulties. Logopedics Phoniatrics Vocology, 23(4), 145-154. https://doi.org/10.1080/140154398434040
Paechter, M., Macher, D., Martskvishvili, K., Wimmer, S., & Papousek, I. (2017). Mathematics anxiety and statistics anxiety. Shared but also unshared components and antagonistic contributions to performance in statistics. Frontiers in Psychology, 8, 1196. https://doi.org/10.3389/fpsyg.2017.01196
Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., Torres, P., Suárez, R., & Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123-135. https://doi.org/10.1037/a0025356
Reyna, V. F., & Brainerd, C. J. (2007). The importance of mathematics in health and human judgment: Numeracy, risk communication, and medical decision making. Learning and Individual Differences, 17(2), 147-159. https://doi.org/10.1016/j.lindif.2007.03.010
Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19(5), 641-648. https://doi.org/10.1037/0894-4105.19.5.641
Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98(4), 854-867. https://doi.org/10.1037/0022-0663.98.4.854
Semenza, C., Meneghello, F., Arcara, G., Burgio, F., Gnoato, F., Facchini, S., Benavides-Varela, S., Clementi, M., & Butterworth, B. (2014). A new clinical tool for assessing numerical abilities in neurological diseases: Numerical activities of daily living. Frontiers in Aging Neuroscience, 6, 112. https://doi.org/10.3389/fnagi.2014.00112
Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. European Child & Adolescent Psychiatry, 9(S2), S58-S64. https://doi.org/10.1007/s007870070009
Vigna, G., Ghidoni, E., Burgio, F., Danesin, L., Angelini, D., Benavides-Varela, S., & Semenza, C. (2022). Dyscalculia in early adulthood: Implications for numerical activities of daily living. Brain Sciences, 12(3), 373. https://doi.org/10.3390/brainsci12030373
Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
Wechsler, D. (2008). Test de rendement individuel de Wechsler, 2e éd., version pour francophones. WIAT-II CDN-F. Harcourt Assessment.
Widera, E., Steenpass, V., Marson, D., Sudore, R. (2011). Finances in the older patient with cognitive impairment: “He didn’t want me to take over”. JAMA, 305(7), 698-706. https://doi.org/10.1001/jama.2011.164
Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118-132. https://doi.org/10.1016/j.lindif.2014.11.017
Téléchargements
Publiée
Numéro
Rubrique
Catégories
Licence
(c) Copyright Marion Lavest, Jessica Bourgin, Anne Lafay 2025

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .

