Validation d'une version française du NADL-F : mesure de l'impact dans l’utilisation financière au quotidien chez des adultes avec des difficultés en mathématiques.

Auteurs

  • Marion Lavest Orthophoniste
  • Jessica Bourgin Laboratoire Interuniversitaire de Psychologie : Personnalité, Cognitions et Changement Social (LIP-PC2S), Université Grenoble Alpes, Université Savoie Mont Blanc, Chambéry, France https://orcid.org/0000-0002-2633-8531
  • Anne Lafay Département de psychologie de l’Université Savoie Mont Blanc, Laboratoire de Psychologie et NeuroCognition du CNRS (LPNC-UMR CNRS 5105), Chambéry, France https://orcid.org/0000-0003-3344-5463

DOI :

https://doi.org/10.61989/6byw4k71

Mots-clés :

cognition mathématique, dyscalculie développementale, adulte, NADL-F, test, impact financier

Résumé

Contexte : Les compétences en mathématiques sont essentielles, celles-ci étant omniprésentes dans les pays industrialisés. Les difficultés en mathématiques perdurent à l’âge adulte chez les personnes présentant un trouble spécifique des apprentissages en mathématiques, anciennement appelé dyscalculie. Pourtant, peu d’études se sont intéressées à cette population et aucune n’a mesuré l’impact de tels troubles sur les capacités financières au quotidien.

Objectifs : L’objectif était de comparer les capacités de manipulation des concepts financiers et de compréhension des situations d’achats chez des individus avec et sans difficulté en mathématiques.

Méthode : La présente étude inclut 171 volontaires ne présentant pas de trouble neurologique acquis. Ainsi, 63 adultes avec des difficultés en mathématiques et 108 participants sans difficulté mathématique ont été confrontés à des tâches financières issues du test italien NADL-F (Arcara, 2017) traduit et adapté en français (NADL-F-fr) pour la présente étude : compter la monnaie, lire des nombres sur des supports financiers, payer ou rendre la monnaie dans des situations d’achat, calculer des pourcentages, définir des termes financiers, repérer des escroqueries. Les participants ont également donné leur ressenti sur leurs compétences dans ces différents domaines.

Résultats : Les performances des adultes avec des difficultés en mathématiques concordent avec leur perception de leurs difficultés. En effet, ils sont significativement moins performants que le groupe contrôle pour compter la monnaie, lire des nombres sur des documents financiers ou commerciaux, estimer le montant de leurs courses, calculer des pourcentages et définir des concepts financiers.

Conclusion : Les adultes présentant des difficultés mathématiques sont aussi particulièrement en difficulté pour manipuler des concepts mathématiques relatifs à la finance. Le NADL-F-fr sera un outil participant à l’évaluation et à la pose de diagnostic de trouble spécifique des apprentissages en mathématiques pour les adultes n’ayant pu être diagnostiqués pendant l’enfance. De plus, de tels résultats montrent l’importance de travailler, en rééducation, sur des situations financières écologiques.

Biographies des auteurs

  • Jessica Bourgin, Laboratoire Interuniversitaire de Psychologie : Personnalité, Cognitions et Changement Social (LIP-PC2S), Université Grenoble Alpes, Université Savoie Mont Blanc, Chambéry, France

    Laboratoire de Psychologie et Neurocognition (LPNC) CNRS UMR 5105, Université Grenoble Alpes, Université Savoie Mont Blanc, Chambéry, France

  • Anne Lafay, Département de psychologie de l’Université Savoie Mont Blanc, Laboratoire de Psychologie et NeuroCognition du CNRS (LPNC-UMR CNRS 5105), Chambéry, France

    Anne LAFAY est maîtresse de conférences universitaire au département de psychologie de l’université Savoie Mont Blanc à Chambéry. Elle est co-responsable de l’équipe Développement et Apprentissage du Laboratoire de Psychologie et NeuroCognition. Elle est aussi chercheuse affiliée au Mathematics Teaching and Learning Lab au département d'Éducation de l’université Concordia à Montréal. Elle est également orthophoniste et détient un diplôme universitaire Études sur le genre. Elle a été orthophoniste pendant plusieurs années en France en cabinet libéral et au Québec en pratique privée. Elle est également formatrice et autrice de matériel d’évaluation et de rééducation à visée des orthophonistes.

Références

American Psychiatric Association. (2015). DSM-5 : Manuel diagnostique et statistique des troubles mentaux. (M.-A. Crocq & J.-D. Guelfi, Éd., P. Boyer, C.-B. Pull, & M.-C. Pull-Erpelding, Trad.). Elsevier Masson.

Arcara, G. (2017). Numerical Activities of Daily Living – Financial (NADL-F) – Test Materials. https://doi.org/10.17605/OSF.IO/D9JNG

Arcara, G., Burgio, F., Benavides-Varela, S., Toffano, R., Gindri, P., Tonini, E., Meneghello, F., & Semenza, C. (2019). Numerical Activities of Daily Living – Financial (NADL-F): A tool for the assessment of financial capacities. Neuropsychological Rehabilitation, 29(7), 1062-1084. https://doi.org/10.1080/09602011.2017.1359188

Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224-237. https://doi.org/10.1037/0096-3445.130.2.224

Ashkenazi, S., Rubinsten, O., & Henik, A. (2009). Attention, automaticity, and developmental dyscalculia. Neuropsychology, 23(4), 535-540. https://doi.org/10.1037/a0015347

Bieg, M., Goetz, T., Wolter, I., & Hall, N. C. (2015). Gender stereotype endorsement differentially predicts girls’ and boys’ trait-state discrepancy in math anxiety. Frontiers in Psychology, 6, 1404. https://doi.org/10.3389/fpsyg.2015.01404

Bulthé, J., Prinsen, J., Vanderauwera, J., Duyck, S., Daniels, N., Gillebert, C. R., Mantini, D., Op de Beeck, H. P., & De Smedt, B. (2019). Multi-method brain imaging reveals impaired representations of number as well as altered connectivity in adults with dyscalculia. NeuroImage, 190, 289-302. https://doi.org/10.1016/j.neuroimage.2018.06.012

Butterworth, B. (2005). Developmental dyscalculia. Dans J. I. D. Campbell (dir.), The Handbook of Mathematical Cognition (p. 455-467). Psychology Press. https://doi.org/10.4324/9780203998045

Castaldi, E., Mirassou, A., Dehaene, S., Piazza, M., & Eger, E. (2018). Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia. PLoS ONE, 13(12), e0209256. https://doi.org/10.1371/journal.pone.0209256

Chipman, S. F., Krantz, D. H., & Silver, R. (1992). Mathematics anxiety and science careers among able college women. Psychological Science, 3(5), 292–295. https://doi.org/10.1111/j.1467-9280.1992.tb00675.x

De Visscher, A., & Noël, M.-P. (2013). A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50-70. https://doi.org/10.1016/j.cortex.2012.01.003

De Visscher, A., Noël, M.-P., Pesenti, M., & Dormal, V. (2018). Developmental dyscalculia in adults: Beyond numerical magnitude impairment. Journal of Learning Disabilities, 51(6), 600-611. https://doi.org/10.1177/0022219417732338

Dirks, E., Spyer, G., van Lieshout, E. C. D. M., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41(5), 460-473. https://doi.org/10.1177/0022219408321128

Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508. https://doi.org/10.3389/fpsyg.2016.00508

Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053

Furman, T., & Rubinsten, O. (2012). Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia. Behavioral and Brain Functions, 8, 55-69. https://doi.org/10.1186/1744-9081-8-55

Ganor-Stern, D. (2017). Can dyscalculics estimate the results of arithmetic problems? Journal of Learning Disabilities, 50(1), 23-33. https://doi.org/10.1177/0022219415587785

Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental & Behavioral Pediatrics, 32(3), 250-263. https://doi.org/10.1097/DBP.0b013e318209edef

Gerardi, K., Goette, L., & Meier, S. (2010). Financial literacy and subprime mortgage delinquency: Evidence from a survey matched to administrative data. Federal Reserve Bank of Atlanta, Working Paper Series, 2010-10. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1600905

Gerber, P. J. (2012). The impact of learning disabilities on adulthood: A review of the evidenced-based literature for research and practice in adult education. Journal of Learning Disabilities, 45(1), 31-46. https://doi.org/10.1177/0022219411426858

Haberstroh, S., & Schulte-Körne, G. (2019). The diagnosis and treatment of dyscalculia. Deutsches Ärzteblatt international, 116(7), 107-114. https://doi.org/10.3238/arztebl.2019.0107

Handel, M. J. (2016). What do people do at work? A profile of U.S. jobs from the survey of workplace Skills, Technology, and Management Practices (STAMP). Journal for Labour Market Research, 49(2), 177-197. https://doi.org/10.1007/s12651-016-0213-1

Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46. https://doi.org/10.2307/749455

Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The Abbreviated Math Anxiety Scale (AMAS): Construction, validity, and reliability. Assessment, 10(2), 178-182. https://doi.org/10.1177/1073191103010002008

Jansen, B. R. J., Schmitz, E. A., & Van Der Maas, H. L. J. (2016). Affective and motivational factors mediate the relation between math skills and use of math in everyday life. Frontiers in Psychology, 7, 513. https://doi.org/10.3389/fpsyg.2016.00513

Kaufmann, L., & Von Aster, M. (2012). The diagnosis and management of dyscalculia. Deutsches Ärzteblatt international, 109(45), 767-778. https://doi.org/10.3238/arztebl.2012.0767

Kovas, Y., Haworth, C. M. A., Harlaar, N., Petrill, S. A., Dale, P. S., & Plomin, R. (2007). Overlap and specificity of genetic and environmental influences on mathematics and reading disability in 10-year-old twins. Journal of Child Psychology and Psychiatry, 48(9), 914-922. https://doi.org/10.1111/j.1469-7610.2007.01748..x

Kucian, K., & Von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174(1), 1-13. https://doi.org/10.1007/s00431-014-2455-7

Lewis, C., Hitch, G. J., & Walker, P. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, 35(2), 283-292. https://doi.org/10.1111/j.1469-7610.1994.tb01162.x

Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: Genetic and environmental etiologies. Journal of Learning Disabilities, 28(2), 96-106. https://doi.org/10.1177/002221949502800204

Limesurvey GmbH (s.d.). LimeSurvey: An open-source survey tool. http://www.limesurvey.org

Luoni, C., Scorza, M., Stefanelli, S., Fagiolini, B., & Termine, C. (2023). A neuropsychological profile of developmental dyscalculia: The role of comorbidity. Journal of Learning Disabilities, 56(4), 310-323. https://doi.org/10.1177/00222194221102925

Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 11, 311-322. https://doi.org/10.2147/PRBM.S141421

Marson, D. C., Sawrie, S. M., Snyder, S., McInturff, B., Stalvey, T., Boothe, A., Aldridge, T., Chatterjee, A., & Harrell, L. E. (2000). Assessing financial capacity in patients with Alzheimer disease: A conceptual model and prototype instrument. Archives of Neurology, 57(6), 877-884. https://doi.org/10.1001/archneur.57.6.877

Mc Kenna, J. S., & Nickols, S. Y. (1988). Planning for retirement security: What helps or hinders women in the middle years? Home Economics Research Journal, 17(2), 153-164. https://doi.org/10.1177/1077727X8801700204

Meiri, H., Sela, I., Nesher, P., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Breznitz, Z. (2012). Frontal lobe role in simple arithmetic calculations: An fNIR study. Neuroscience Letters, 510(1), 43-47. https://doi.org/10.1016/j.neulet.2011.12.066

Mejias, S., Grégoire, J., & Noël, M.-P. (2012). Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 22(1), 164-170. https://doi.org/10.1016/j.lindif.2011.09.013

Ostad, S. A. (1998). Comorbidity between mathematics and spelling difficulties. Logopedics Phoniatrics Vocology, 23(4), 145-154. https://doi.org/10.1080/140154398434040

Paechter, M., Macher, D., Martskvishvili, K., Wimmer, S., & Papousek, I. (2017). Mathematics anxiety and statistics anxiety. Shared but also unshared components and antagonistic contributions to performance in statistics. Frontiers in Psychology, 8, 1196. https://doi.org/10.3389/fpsyg.2017.01196

Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., Torres, P., Suárez, R., & Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123-135. https://doi.org/10.1037/a0025356

Reyna, V. F., & Brainerd, C. J. (2007). The importance of mathematics in health and human judgment: Numeracy, risk communication, and medical decision making. Learning and Individual Differences, 17(2), 147-159. https://doi.org/10.1016/j.lindif.2007.03.010

Rubinsten, O., & Henik, A. (2005). Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology, 19(5), 641-648. https://doi.org/10.1037/0894-4105.19.5.641

Rubinsten, O., & Henik, A. (2006). Double dissociation of functions in developmental dyslexia and dyscalculia. Journal of Educational Psychology, 98(4), 854-867. https://doi.org/10.1037/0022-0663.98.4.854

Semenza, C., Meneghello, F., Arcara, G., Burgio, F., Gnoato, F., Facchini, S., Benavides-Varela, S., Clementi, M., & Butterworth, B. (2014). A new clinical tool for assessing numerical abilities in neurological diseases: Numerical activities of daily living. Frontiers in Aging Neuroscience, 6, 112. https://doi.org/10.3389/fnagi.2014.00112

Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. European Child & Adolescent Psychiatry, 9(S2), S58-S64. https://doi.org/10.1007/s007870070009

Vigna, G., Ghidoni, E., Burgio, F., Danesin, L., Angelini, D., Benavides-Varela, S., & Semenza, C. (2022). Dyscalculia in early adulthood: Implications for numerical activities of daily living. Brain Sciences, 12(3), 373. https://doi.org/10.3390/brainsci12030373

Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469-8749.2007.00868.x

Wechsler, D. (2008). Test de rendement individuel de Wechsler, 2e éd., version pour francophones. WIAT-II CDN-F. Harcourt Assessment.

Widera, E., Steenpass, V., Marson, D., Sudore, R. (2011). Finances in the older patient with cognitive impairment: “He didn’t want me to take over”. JAMA, 305(7), 698-706. https://doi.org/10.1001/jama.2011.164

Wilson, A. J., Andrewes, S. G., Struthers, H., Rowe, V. M., Bogdanovic, R., & Waldie, K. E. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118-132. https://doi.org/10.1016/j.lindif.2014.11.017

Téléchargements

Publiée

30-06-2025

Comment citer

Lavest, M., Bourgin, J., & Lafay, A. . (2025). Validation d’une version française du NADL-F : mesure de l’impact dans l’utilisation financière au quotidien chez des adultes avec des difficultés en mathématiques. Glossa, 143, 26-65. https://doi.org/10.61989/6byw4k71